Acta Crystallographica Section E

Structure Reports

Online
Methyl 1,6-dimethyl-4-(3-nitrophenyl)-2-oxo-
1,2,3,4-tetrahydropyrimidine-5-carboxylate
ISSN 1600-5368

Jian-Jun Li, ${ }^{\text {a }}$ Lai Jiang, ${ }^{\text {a }}$ Xue-Ping Wu^{b} and Wei-Ke Su ${ }^{\text {a* }}$
${ }^{\text {a }}$ Zhejiang Key Laboratory of Pharmaceutical Engineering, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and ${ }^{\mathbf{b}}$ Zhejiang Shenghua Biok Biological Co. Ltd, Zhejiang 313220, People's Republic of China

Correspondence e-mail: suweike@zjut.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.087$
ωR factor $=0.168$
Data-to-parameter ratio $=12.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The dihydropyrimidine ring of the title compound, $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{5}$, assumes a boat conformation. The stability of the solid-state structure is enhanced by $\pi-\pi$ stacking interactions and hydrogen-bonding interactions, linking the molecules into an extended three-dimensional network.

Comment

In the past decade, dihydropyrimidinones have attracted considerable interest due to their therapeutic and pharmacological activities (Kappe, 1993). Some of them have also emerged as the integral backbones of several calcium-channel blockers, antihypertensive agents and neuropeptide Y (NPY) antagonists (Atwal et al., 1990; Rovnyak et al., 1995). The synthesis of this kind of heterocyclic compound has therefore gained great importance. A simple, efficient and practical procedure for obtaining dihydropyrimidinones has recently been reported by our laboratory (Su et al., 2005).

In the title compound, (I) (Fig. 1), the six-membered dihydropyrimidine ring assumes a boat conformation, with puckering parameters $Q=0.429(3), \theta=75.6(4)^{\circ}$ and $\varphi=$ 6.2 (4) ${ }^{\circ}$ (Cremer \& Pople, 1975). The molecular conformation is stabilized by intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonds (Table 2).

In the crystal structure, the benzene rings of centrosymmetrically related molecules at (x, y, z) and $(1-x, 1-y$, $1-z$) overlap with a distance of 3.597 (5) \AA between their centroids, indicating the existence of $\pi-\pi$ stacking interactions. In addition, one strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and two weak $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds (Table 2) link the molecules into an extended three-dimensional network (Fig. 2).

Experimental

A mixture of 3-nitrobenzaldehyde (5 mmol), methyl 3-oxobutanoate (5 mmol), urea (7.5 mmol) and strontium trifluoromethanesulfonate (0.05 mmol) was heated at 343 K with stirring for 4 h . After cooling, the reaction mixture was poured into cold water and stirred for 5 min . The precipitate was suction filtered, washed with cold water, filtered and recrystallized from ethanol to afford the pure product (m.p. 461-

Received 16 January 2006
Accepted 14 February 2006
\qquad

463 K). Single crystals suitable for X-ray data collection were obtained by slow evaporation of an ethanol solution. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 8.19-8.11(m, 2 H), 8.07(s, 1 H), 7.67-7.61(m, 2 H), 5.30$ $(d, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 3.59(s, 3 H), 3.11(s, 3 H), 2.99(s, 3 H) .{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 165.8,157.5,152.7,147.6,145.5,132.9,129.6,122.4$, 120.5, 101.0, 58.8, 51.6, 29.8, 16.1.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{5}$
$M_{r}=305.29$
Monoclinic, $P 2_{1} / c$
$a=7.5489(7) \AA$
$b=19.616(2) \AA$
$c=9.5165(9) \AA$
$\beta=96.537(2)^{\circ}$
$V=1400.0(2) \AA^{\circ}$
$Z=4$

Data collection

Bruker SMART APEX area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.972, T_{\text {max }}=0.983$
7410 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.087$
$w R\left(F^{2}\right)=0.168$
$S=1.28$
2519 reflections
202 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1$	$1.228(4)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.448(4)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.341(4)$	$\mathrm{N} 2-\mathrm{C} 1$	$1.391(4)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.437(4)$	$\mathrm{N} 2-\mathrm{C} 4$	$1.405(4)$
$\mathrm{O} 3-\mathrm{C} 7$	$1.194(4)$	$\mathrm{N} 2-\mathrm{C} 5$	$1.464(4)$
$\mathrm{O} 4-\mathrm{N} 3$	$1.205(4)$	$\mathrm{N} 3-\mathrm{C} 13$	$1.476(5)$
$\mathrm{O} 5-\mathrm{N} 3$	$1.213(4)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.520(4)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.338(4)$	$\mathrm{C} 2-\mathrm{C} 9$	$1.528(4)$
$\mathrm{C} 7-\mathrm{O} 2-\mathrm{C} 8$	$117.0(3)$	$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 5$	$121.1(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$121.8(3)$	$\mathrm{O} 4-\mathrm{N} 3-\mathrm{O} 5$	$123.1(4)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 4$	$120.8(3)$	$\mathrm{O} 4-\mathrm{N} 3-\mathrm{C} 13$	$118.4(3)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 5$	$115.8(3)$	$\mathrm{O} 5-\mathrm{N} 3-\mathrm{C} 13$	$118.5(4)$

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

Figure 1
The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level.

Figure 2
The crystal packing of (I), showing intra- and intermolecular hydrogenbonding interactions as dashed lines.

All H atoms were positioned geometrically and allowed to ride on their parent atoms $(\mathrm{C}-\mathrm{H}=0.93,0.96$ and $0.98 \AA$ for aromatic, methyl and methine H atoms, respectively, and $\mathrm{N}-\mathrm{H}=0.86 \AA$), with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ or $1.5 U_{\mathrm{eq}}($ methyl C $)$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

The authors thank the Commission of Science and Technology of Zhejiang Province (No. 2003 C24004) and the School of Chemistry and Materials Science, Wenzhou University for supporting this work.

organic papers

References

Atwal, K. S., Rovnyak, G. C., Kimball, S. D., Floyd, D. M., Moreland, S., Swanson, B. N., Gougoutas, J. Z., Schwartz, J., Smillie, K. M. \& Malley, M. F. (1990). J. Med. Chem. 33, 2629-2635.

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Kappe, C. O. (1993). Tetrahedron, 49, 2803-2816.
Rovnyak, G. C., Kimball, S. D., Beyer, B., Cucinotta, G., DiMarco, J. D., Gougoutas, J. Z., Hedberg, A., Malley, M. F., McCarthy, J. P., Zhang, R. \& Moreland, S. (1995). J. Med. Chem. 38, 119-129.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Su, W. K., Li, J. J., Zheng, Z. G. \& Shen, Y. C. (2005). Tetrahedron Lett. 46, 6037-6040.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

